skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Marshall, Maxwell"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Viscous fingering, a classic hydrodynamic instability, is governed by the the competition between destabilising viscosity ratios and stabilising surface tension or thermal diffusion. We show that the channel confinement can induce ‘diffusion’-like stabilising effects on viscous fingering even in the absence of interfacial tension and thermal diffusion, when a clear oil invades the mixture of the same oil and non-colloidal particles. The key lies in the generation of long-range dipolar disturbance flows by highly confined particles that form a monolayer inside a Hele-Shaw cell. We develop a coarse-grained model whose results correctly predict universal fingering dynamics that is independent of particle concentrations. This new mechanism offers insights into manipulating and harnessing collective motion in non-equilibrium systems. 
    more » « less
    Free, publicly-accessible full text available May 25, 2026